Assessing potential distribution zone prone to invasion risk of Hyptis suaveolens (L) in Jharkhand, Eastern India using Maxent

Sk Mujibar Rahaman, Brojo Gopal Ghosh, Sanjoy Garai, Masjuda Khatun, Ashish Ranjan, Rajesh Mishra, Sharad Tiwari

Abstract


The rapid spread of alien invasive plant species hasemerged as one of the serious issues for the forest composition, biodiversity and ecosystem services. The most probable distribution range of Hyptis suaveolens was modeled for Jharkhand using Maxent for the year 2020 and 2050 under different Representative Concentration Pathways (RCPs) i.e. 2.6, 4.5, 6.0 and 8.5. The model predicted  that at present ~5.89% of the geographical area of Jharkhand is under High Risk Zone (HRZ) to infestation of H. suaveolens and by 2050 the potential area of invasion may increase to ~6.35- 6.98% depending upon RCP`s. Model predicted prominent distribution H. suaveolens in agroclimatic sub zone IV with ~ 4.89% of sub zone  area under HRZ, followed by comparatively very small ~0.49% area of sub zone V and ~ 0.50% area of sub zone VI are under HRZ of  invasion threat of H. suaveolens. The study predicted dominance of the distribution in sub zone IV to continue in future also and this may increase to ~ 5.41-6.05% by 2050 depending upon RCP scenario. In contrast, a declining trend may occur in sub zone V, where the potential infested area may decrease in the range of ~0.17%-0.04% depending upon RCPs. The study showed tropical dry deciduous forests and non-forest classes are more prone to infestation of H. suaveolens. Bio_8 (mean temperature of wettest quarter) and Bio_18 (precipitation of warmest quarter) contributed most in limiting the distribution of H. suaveolens for the year 2020 and 2050 respectively. The study provides prior identification of the potential distribution sites prone to infestation of H. suaveolens, enabling prioritization of treatment areas to curtail further invasion.


Keywords


Climate change; Hyptis suaveolens; High Risk Zone; Invasive specie; RCPs

References


Adda, C., Atachi, P., Hell, K., and Tamò, M. 2011. Potential use of the bushmint, Hyptissuaveolens, for the control of infestation by the pink stalk borer, Sesamiacalamistis on maize in southern Benin, West Africa. Journal of Insect Science, 11(1), 33. https://doi.org/10.1673/031.011.0133

Année. 2009. What are Invasive Alien Species? Convention on Biological Diversity. Retrieved from https://www.cbd.int/idb/2009/about/what/ on 10 august 2020.

Araújo, M. B., and New, M. 2007. Ensemble forecasting of species distributions. Trends in ecology & evolution, 22(1), 42-47. https://doi.org/10.1016/j.tree.2006.09.010

Bradley, B. A., Blumenthal, D. M., Wilcove, D. S., and Ziska, L. H. 2010. Predicting plant invasions in an era of global change. Trends EcolEvol. 25, 310–318 (2010). https://doi.org/10.1016/j.tree.2009.12.003

Broennimann, O., Treier, U. A., Muller-Scharer, H., Thuiller, W., Peterson, A. T. P., and Guisan, A. 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709. https://doi.org/10.1111/j.1461-0248.2007.01060.x

Burgiel, S. W., & Muir, A. A. (2010). Invasive Species, Climate Change and Ecosystem-Based.10.13140/2.1.1460.8161

Chaudhary, A., Sarkar, M. S., Adhikari, B. S., and Rawat, G. S. 2021. Ageratinaadenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling. PloS one, 16(5), e0239690.

Divakara B.N., Prasad S., and Das R. 2013. Documentation of Invasive plants in Lateher and Hazaribagh Districts: Jharkhand – India. Indian Forester, 141 (11):1171–1175.

Dufresne, J.L., Foujols, M.A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Bony, S. 2013. Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim. Dynam. 40 (9e10), 2123e2165. https://doi.org/10.1007/s00382-012-1636-1.

Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M. Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., and Zimmermann. N. E. 2006. Novel methods improve prediction of species distributions from occurrence data Ecography, 29, pp. 129-151.

FAO. Accessed on 25 thFebruary 2021. Digital Soil Map of the World. http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/.

Fick, S. E., and Hijmans, R.. J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315. https://doi.org/10.1002/joc.5086

FSI. 2019. Forest Survey of India; https://fsi.nic.in/

Goberville, E., Beaugrand, G., Hautekèete, N. C., Piquot, Y., and Luczak, C. 2015. Uncertainties in the projection of species distributions related to general circulation models. Ecology and evolution, 5(5), 1100-1116. https://doi.org/10.1002/ece3.1411

Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends in ecology & evolution, 19(9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N. G., Lehmann, A., Zimmermann, N. E. 2006. Using niche-based models to improve the sampling of rare species. Conservation Biology, 20(2), 501–511.https://doi.org/10.1111/j.1523-1739.2006.00354.x

Guo, Q., Sax, D. F., Hong, Q., and Early, R. 2012. Latitudinal shifts of introduced species: possible causes and implications. Biological Invasions, 14, 547–556. https://doi.org/10.1007/s10530-011-0094-8

Islam, A. K. M., Ohno, O., Suenaga, K., and Kato-Noguchi, H. 2014. Suaveolic acid: A potent phytotoxic substance of Hyptissuaveolens. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/425942

Islam, A. M., and Kato-Noguchi, H. 2013. Plant growth inhibitory activity of medicinal plant Hyptissuaveolens: could allelopathy be a cause?. Emirates Journal of Food and Agriculture, 692-701. https://doi.org/10.9755/ejfa.v25i9.16073

Jueterbock, A., Smolina, I., Coyer, J. A., and Hoarau, G. 2016. The fate of the Arctic Seaweed Focus distitches under climate change: an ecological niche modeling approach. Ecology and Evolution, 6 (6), pp. 1712-1724. https://doi.org/10.1002/ece3.2001

Kumar, M., Padalia, H., Nandy, S., Singh, H., Khaiter, P., and Kalra, N. 2019. Does spatial heterogeneity of landscape explain the process of plant invasion? A case study of Hyptissuaveolens from Indian Western Himalaya. Environmental Monitoring and Assessment, 191(3), 794. https://doi.org/10.1007/s10661-019-7682-y

Lal, H. S., Singh, S., Kumar, A., Mishra, P. K., and Mishra, K. 2012. Study of Invasive and Alien species in Jharkhand, India and its impact on Environment. The Journal of Ethnobiology and Traditional Medicine. Photon, 117, 167-177.

Lüi, X.R.2011. Quantitative risk analysis and prediction of potential distribution areas of common lantana (Lantana Camara) in China. Computational Ecology and Software, 1(1): 60-65.

Madren, C. 2011.Why invasive plants are the 'second biggest threat to biodiversity' after habitat loss. Ecologist. Retrieved from https://theecologist.org/2011/mar/23/why-invasive-plants-are-second-biggest-threat-biodiversity-after-habitat-loss on 11 august 2020.

Masters, G., & Norgrove, L. (2010). Climate change and invasive alien species. UK: CABI Working Paper, 1,30.https://www.cabi.org/Uploads/CABI/expertise/invasive-alien-species-working-paper.pdf

Mishra, S. N., Kumar, D., Kumar, B., and Tiwari, S. 2021. Assessing impact of varying climatic conditions on distribution of BuchananiaCochinchinensis in Jharkhand using species distribution modeling approach. Current Research in Environmental Sustainability, 3, 100025.https://doi.org/10.1016/j.crsust.2021.100025

Mishra, S. N., Kumar, D., and Tiwari, S. 2019. Selection of suitable digital elevation model for analysis of forest cover in different agro-climatic zones of Jharkhand, India. Tropical Plant Research, 6(1), 54-62.https://doi.org/10.22271/tpr.2019.v6.i1.010

Mudgal, V., Khanna, K.K., and Hazra P.K. 1997. Flora of Madhya Pradesh II. Botanical Survey of India, Kolkata, India

Murthy, E. N., Raju, V. S., and Reddy, C. S. 2007. Occurrence of exotic Hyptissuaveolens. Current Science, 93(9). 0011-3891. 20073273608. http://www.ias.ac.in/currsci

Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., and Ramirez-Villegas, J. 2020. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific data, 7(1), 1-14. https://doi.org/10.1038/s41597-019-0343-8

Padalia, H., Srivastava, V., and Kushwaha, S. P. S. 2014. Modeling potential invasion range of alien invasive species, Hyptissuaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological informatics, 22, 36-43. https://doi.org/10.1016/j.ecoinf.2014.04.002

Padalia, H., Srivastava, V., and Kushwaha, S. P. S. 2015. How climate change might influence the potential distribution of weed, bushmint (Hyptissuaveolens)?. Environmental monitoring and assessment, 187(4), 210. https://doi.org/10.1007/s10661-015-4415-8

Paul, R., Subudhi, D. K., Sahoo, C. K., and Banerjee, K. 2021. Invasion of Lantana camara L. and its response to climate change in the mountains of Eastern Ghats. Biologia, 76(5), 1391-1408. https://doi.org/10.1007/s11756-021-00735-8

Peterson, A. T., Stewart, A., Mohamed, K. I., and Arau’jo, M. B. 2008. Shifting global invasive potential of European plants with climate change. PLoS ONE, 3, 1–7. https://doi.org/10.1371/journal.pone.0002441

Phillips, S. J., Miroslav, D., and Robert, E. S. Accessed on 5 th May 2020. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2021-05-05.

Phillips, S.J., Anderson, R.P., and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling 190 (3-4), 231e259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Polley, H. W., Johnson, H. B., and Mayeux, H. S. 1997. Leaf physiology, production, water use, and nitrogen dynamics of the grassland invader Acacia smallii at elevated CO2 concentrations. Tree Physiology, 17(2), 89-96. https://doi.org/10.1093/treephys/17.2.89

Poudel, A. S., Shrestha, B. B., Joshi, M. D., Muniappan, R., Adiga, A., Venkatramanan, S., and Jha, P. K. 2020. Predicting the Current and Future Distribution of the Invasive Weed Ageratinaadenophora in the Chitwan–Annapurna Landscape, Nepal. Mountain Research and Development, 40(2), R61. https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1

Qin, Z., Zhang, J. E., DiTommaso, A., Wang, R. L., and Liang, K. M. 2016. Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models. Climatic change, 134(1-2), 193-208. https://doi.org/10.1007/s10584-015-1500-5

Rai, P.K. 2015. What makes the plant invasion possible? Paradigm of invasion mechanisms, theories and attributes. Environmental Skeptics and Critics, 2015, 4(2).

Ray, A., and Ray, R. 2014. Rapid divergence of ecotypes of an invasive plant. AoB PLANTS, Volume 6, 2014, plu052, https://doi.org/10.1093/aobpla/plu052.

Schwarzkopf, T., Trevisan, M. C., and Silva, J. F. 2009. A matrix model for the population dynamics of Hyptissuaveolens, an annual weed. Ecotrópicos, 22(1), 23-36. http://www.saber.ula.ve/handle/123456789/30062

Sharma, A., Batish, D. R., Singh, H. P., Jaryan, V., & Kohli, R. K. 2017. The impact of invasive Hyptissuaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India. Flora, 233, 156-162,https://doi.org/10.1016/j.flora.2017.04.008.

Sharma, G. P., Singh, J. S., and Raghubanshi, A. S. 2005. Plant invasions: Emerging trends and future implications.Current Science 88:726-734. https://www.jstor.org/stable/24111258

Sharma, L. N., Adhikari, B., Watson, M. F., Karna, B., Paudel, E., Shrestha, B. B., and Rijal, D. P. 2019. Forest canopy resists plant invasions: a case study of Chromolaena odorata in sub-tropical Sal (Shorearobusta) forests of Nepal. bioRxiv, 747287. https://doi.org/10.1101/747287

Shrestha, U. B., Sharma, K. P., Devkota, A., Siwakoti, M., and Shrestha, B. B. 2018. Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecological Indicators, 95, 99-107. https://doi.org/10.1016/j.ecolind.2018.07.009

Stockwell, D. 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International journal of geographical information science, 13(2), 143-158. https://doi.org/10.1080/136588199241391

Stone B.C. 1970. The flora of Guam. Micronesica 6, 1–659.

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., and Lamarque, J. F. 2011. The representative concentration pathways: an overview. Climatic Change. 109(1–2). 5. https://doi.org/10.1007/s10584-011-0148-z.

Verma, B.K., and Mishra, B.K. 1992. Flora of Allahabad district UP India.

Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J., and Roy, P. S. 2013. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological engineering, 51, 83-87. https://doi.org/10.1016/j.ecoleng.2012.12.004

Yoganarasimhan, S.N. 2000. Medicinal Plants of India (eds Srinivasan, V. and Kosal-Ram, N.), vol. 2. Cyber Media, Bangalore, 282.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

COPYRIGHT of this Journal vests fully with the National Instional Institute of Ecology. Any commercial use of the content on this site in any form is legally prohibited.