Carbon Sequestration and Crop Productivity in Eucalyptus-Wheat Agroforestry System

Avinash Jain, Nidhi Mehta


Allometric relationships between girth at breast height (GBH), height, age and carbon content in eucalyptus trees were established using100 trees of age varying from 0.5 to 24 years, height from 1.20 to 21.10m and GBH from 6.10 to 74.92cm. Regression equation with GBH i.e. y = 2.224 x – 35.80, r2 = 0.89 (p<0.01) was found to be the most practical and precise for determining the carbon content in eucalyptus trees. The equation was applied in Eucalyptus-Triticum aestivum (wheat) agroforestry system established at farmer's field in Jabalpur, M.P. (India). Determination of carbon stock potential of eucalyptus trees in wheat-based agroforestry and its relationship with the productivity of the crop revealed that carbon content in eucalyptus trees increased when cultivated with wheat in agroforestry system. Although, this upsurgegradually declined with age of the trees with maximum (32.64%) in 1.5 years to 0.38% in 4.5 years old trees. Simultaneously, economic yield and crop biomass of wheat crop also declined with increase in age of eucalyptus trees.

The results suggest that wheat can be cultivated with eucalyptus trees during initial two years of plantation to enhance carbon stock in trees without affecting crop productivity.


Eucalyptus urograndis, allometric equation, agroforestry system, carbon sequestration, above ground biomass.


Anonymous.2014. National Agroforestry Policy–2014. Department of Agriculture and Cooperation GOI. Retrieved from: ry%20Policy%202014.pdf.

Basuki, T.M.; Van Laake P. E.; Skidmore A.K. and Hussin Y.A. 2009. Allometric equations for estimating the above ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management 257: 1684-1694.

Brown S.; Gillespie A.J.R. and Lugo A.E. 1989. Biomass estimation methods for tropical forest with applications to forest inventory data. Forest Science 35(4): 881-902.

Chambers, J.Q.; Santos, J.; Ribeiro R.J.; and Higuchi, N. 2001. Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management 152 (1-3): 73-84.

Chave, J.; Andalo, C.; Brown, S.; Cairns, M. A.; Chambers, J.Q.; Eamus, D.; Foelster, H.; Fromard, F.; Higuchi, N.; Kira, T.; Lescure, J.; Nelson, B.; Ogawa, H.; Puig, H.; Riéra, B. and Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99.

Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S. and Perez, R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359(1443): 409-420.

Dhillon,R.; Chavan, S.; Bangarwa, K.; Bharadwaj, K.; Kumari, S. and Sirohi, C. 2018. Eucalyptus-based agroforestry system under semi-arid condition in north-western India: An economic Analysis. Indian Journal of Ecology 45: 470-474.

Dhyani, S. K.; Newaj, R. and Sharma, A.R. 2009. Agroforestry: its relation with agronomy, challenges and opportunities. Indian Journal of Agronomy 54(3): 249-266.

Fujimoto, T.; Kita, K.; Uchiyama, K.; Kuromaru, M.; Akutsu, H. and Oda, K. 2006. Age trends in the genetic parameters of wood density and the relationship with growth rates in hybrid larch (Larixgmelinii var. japonicaxL. kaempferi) F1. Journal of Forestry Research 11(3): 157-163.

Gupta, A.; Rai, P. and Handa, A. K. 2006. Allometry for estimating above ground biomass of Eucalyptus tereticornis under energy and boundary plantations in central India. Annals of arid zone 45(2): 175-182.

Hultine, K. R.; Koepke, D. F.; Pockman, W. T.; Fravolini, A.; Sperry, J. S. and Williams, D. G. 2005. Influence of soil texture on hydraulic properties and water relations of a dominant warm-desert phreatophyte. Tree Physiology 26(3): 313-323.

Ketterings, Q. M.; Coe, R.; Noordwijk, M. V.; Ambagau, Y. and Palm, C. A. 2001. Reducing uncertainty in the use of allometric biomass equation for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146(1): 199-220.

King, D.A.; Davis, S. J.; Supardi, M.N.N. and Tan, S. 2005. Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology 19(3):445-453.

Larjavaara,M. and Muller-Landau, H.C. 2013. Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution 4(9): 1-9.

Mandal, R.; Kumar,B.; Yadav, B. K. V.; Yadav, K.; Ishwar, C.; Dutta, Shamsul, M. and Haque. 2013. Development of allometric equation for biomass estimation of Eucalyptus camaldulensis: A study from Sagarnath forest, Nepal. International Journal of Biodiversity and Ecosystems 1: 1-7.

Minang, P.; Bernard, F.; Van, N. M.; and Kahurani, E. 2013. Agroforestry in REDD+: opportunities and challenges. ASB Policy Brief 26. Nairobi, Kenya: ASB Partnership for the Tropical Forest Margins.

Missanjo, E.; Kamanga-Thole, G. and Bonongwe, D. 2015. Allometric equations for estimation of above ground biomass of Eucalyptus camaldulensis in Malawi. Journal of Basic and Applied Research International 2: 41-47.

Nelson, B. W.; Mesquita, R.; Pereira, J. L. G.; De-Souza, S. G. A. and Batista, G. T.; Couto, L. B. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management 117: 149-167.

Ong CK, Huxley P. 1996. Tree-crop interactions: a physiological approach. CAB International and ICRAF, Wallingford.

Ong, C.K.; Kho, R.M.; Radersma, S. 2004. Ecological interactions in multispecies agroecosystems: concepts and rules. In: Noordwijk MV, Cadisch J, Ong CK (eds) Below-ground interactions in tropical agroecosystems: concepts and models with multiple plant components. CABI, Wallingford.

Poultouchidou, A.; Monnier, V. and Birigazzi, L. 2013. Inventory of allometric equations for estimation of above-ground tree biomass and volume in the Pacific. UN-REDD Programme, MRV report 17, Rome, Italy.

Prasad, J. V. N. S.; Korwar, G. R.; Rao, K. V.; Mandal, U. K.; Rao, C. A. R.; Rao, G. R. ;Ramakrishna, Y. S.; Venkateswarlu, B.; Rao, S. N.; Kulkarni, H. D. and Rao, M. R. 2010 .Tree row spacing affected agronomic and economic performance of Eucalyptus-based agroforestry in Andhra Pradesh, Southern India. Agroforestry Systems 78: 253–267

Ryan, M.G.; Binkley, D.; Fownes, J.H.; Giardina, C.P. and Senock, R.S. 2004. An experimental test of the causes of forest growth decline with stand age. Ecological Monographs 74(3): 393-414.

Schroth, G. 1999. A review of belowground interactions in agroforestry, focusing on mechanisms and management options. Agroforestry Systems 43: 5-34.

Sirvi, A.; Dhyani, S. and Dev, I. 2016. Potential of agroforestry systems in carbon sequestration in India. Indian Journal of Agricultural Sciences 86: 1103-1112.

Socha, J.; Kulej, M. 2007. Variation of the tree form factor and taper in European larch of Polish provenances tested under conditions of the BeskidSądecki mountain range (southern Poland). Journal of Forest Science 53(12): 538-547.

Sterck, F.J.; Bongers, F.; Newbery, D.M. 2001. Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. Plant Ecology 153(1-2): 279-292.

Stone, E.L.; Kalisz, P. J. 1991. On the maximum extent of tree roots. Forest Ecology and Management 46: 59-102.

Swaine, M. D.; Whitmore, T. C. 1988. On the definition of ecological species groups in tropical rain forests. Vegetation 75(1-2): 81-86.

Tamrakar, P. R. 2000. Biomass and volume tables with species description for community forest management. Ministry of Forests and Soil Conservation, Government of Nepal, 1-37.

Tiepolo, G.; Calmon, M.; Feretti, A. R. 2002. Measuring and monitoring carbon stocks at the Guaraqueçaba climate action project, Parana, Brazil. In: Lin K and Lin J (eds.) International symposium on forest carbon sequestration and monitoring. Extension series Taiwan forestry research institute 153: 98-115.

Williams, M. S.; Schreuder, H. T. 2000.Guidelines for choosing volume equations in the presence of measurement error in height. Canadian Journal of Forest Research 30: 306-310.

Full Text: PDF


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

COPYRIGHT of this Journal vests fully with the National Instional Institute of Ecology. Any commercial use of the content on this site in any form is legally prohibited.